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Abstract 

 

   In this note smooth tests of fit for a mixture of two Poisson distributions are derived and compared with a 

traditional Pearson chi-squared test. The tests are illustrated with a classic data set of deaths per day of women 

over 80 as recorded in the London Times for the years 1910 to 1912. 
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1. Introduction 

 

  A Poisson process is often used to model count 

data. Sometimes an underlying mechanism 

suggests two Poisson processes may be 

involved. This may be modelled by a two 

component Poisson mixture model. The two 

Poisson mixture applies generally to data more 

dispersed than that modelled by a single Poisson. 

An interesting example was given by Leroux and 

Puterman (1992) who fit a two Poisson mixture 

to fetal lamb movement data. They say the 

mixture model "... has a clear interpretation in 

terms of a ... background rate ... and an excited 

state." The Poisson probability function, f(x; ) 

say, is given by 

 

f(x; ) = exp(–)x/x!, x = 0, 1, 2, ..., 

in which  > 0 

 

and the two component Poisson mixture model 

has probability function 

 

f*(x; 1, 2, p) = p f(x; 1) + (1 – p) f(x; 2), 

x = 0, 1, 2, ..., in which 1 > 0, 2 > 0,  

1 ≠ 2 and 0 < p < 1. 

 

A common test of fit for f*(x; 1, 2, p) is based 

on the well-known Pearson’s X
2
. If there are l 

classes X
2
 is approximately 2

 with l – 4 degrees 

of freedom: 2
4l . 

  In section 2 we look at estimation of the 

parameters 1, 2 and p. Section 2 also defines 

the X
2
 test and some smooth tests of fit. Section 

3 gives a small power comparison while section 

4 considers a classic data set of deaths per day of 

women over 80 as recorded in the London Times 

for the years 1910 to 1912. 

 

 
2. Estimation and Test Statistics 

 

  The two most common approaches for estimating 

1, 2 and p are based on moments (MOM) and 

maximum likelihood (ML). If we have n data points 

x1, x2, …, xn and x  = nx
n

i i /
1 

 and mt = 

  nxx
n

i

t

i /
1 

 , t = 2, 3, ... the MOM estimators 

satisfy 

 

p~  = ( x  – 2

~
 )/( 1

~
  – 2

~
 ), 1

~
  = (A – D)/2,  

and 2

~
  = (A + D)/2 
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in which 

 

A = 2 x  + (m3 – 3m2 + 2 x )/(m2 – x ) 

and D
2
 = A

2
 – 4A x  + 4(m2 + 2x  – x ). 

 

This method clearly fails if D
2
 < 0, if any of 1

~
 , 2

~
  

and p~  are outside their specified bounds, or if m2 = 

x .  

  Iteration is needed to find the ML estimates and 

given the speed of modern computers an EM type 

algorithm is satisfactory. This will always converge 

to 1̂ , 2̂  and p̂  within the specified bounds if the 

initial estimates are also within these bounds. 

However convergence can be slow – occasionally 

more than 1,000 iterations – and a local, but not 

universal, maximum may be found. A grid of initial 

values is often worth examining. This was not done 

for the calculations in Table 1 because all the sizes 

were 0.05 suggesting universal maxima were indeed 

found. To check on the possibility of a local 

stationary point it is also useful to examine contour 

plots of the likelihood surface. This was done for the 

Deaths of London Women example in section 4. The 

following estimation equations are needed: 

 

kp̂  = 
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, r = 1, 2, 

 

where kr,̂  is the estimate of r at the kth iteration, 

kp̂  is the estimate of p at the kth iteration and ( 0,1̂ ,

0,2̂ , 0p̂ ) = ( 1

~
 , 2

~
 , p~ ) may be an admissible initial 

value. See, for example, Everitt and Hand (1981, 

p.97). Newton’s method will sometimes converge to 

the correct values and when it does the convergence 

is much quicker than the above estimating equations. 

However, Newton's method doesn't always converge 

and may give estimates outside the specified bounds. 

  Now let Oj be the number of data points equal to j, j 

= 0, 1, 2, ... . Let Ej = )ˆ,ˆ,ˆ;(* 21 pjnf  . Often 

classes are pooled in the tail until the greatest l is 

found such that the expectation of the classes from 

the lth on is at least 5. Then the Pearson test of fit 

statistic is 

 

X
2
 = j

l

j

jj EEO /)(
1

2



  

 

and X
2
 is taken to have the 2

4l  distribution. 

  Smooth test components Vs can be defined as 

 

sV̂  = npxg
n

i

is /)ˆ,ˆ,ˆ;(
1

21


 , s = 2, 3, ... 

 

Here {gs(.)} is the set of orthonormal functions on 

the null distribution. We give formulae, in terms of 

the population moments ,2, ..., 6 for the first four 

orthonormal functions and 2V̂  and 3V̂  in Appendix 

A. For the mixture of two Poissons these moments 

can be calculated from the population factorial 

moments 
'

][t  = tt pp 21 )1(   . Smooth tests of fit 

are discussed in detail in Rayner et al. (2009). 

 

Table 1. 100powers based on 10,000 Monte Carlo 

samples for n = 100 and  = 0.05 for a null Poisson 

mixture with p = 0.5, 1 = 2 and 2 = 5. 

Alternative 2
2V̂  

2
3V̂  2

4V̂  
2X  

Null 5 5 5 5 

NB(2, 0.4 ) 45 39 40 41 

NB(3, 0.5) 18 20 20 18 

NB(4, 0.5) 19 20 24 27 

NTA(1, 2) 79 69 51 54 

0.5 × NB(2, 0.4) 

+ 0.5 × NB(2, 0.5) 

33 28 30 31 

0.5 × NB(2, 0.3) 

+ 0.5 × NB(3, 0.5) 

64 48 59 65 

NTA(2, 2) 88 66 55 81 

NTA(2, 1) 26 26 22 16 

NTA(1, 3) 98 94 72 92 

P(4) 37 14 13 4 

P(6) 33 13 5 10 

 

 

3. Indicative Size and Power Study 

 

We consider the case  = 0.05, p = 0.5, 1 = 2, 2 = 

5. Based on 25,000 Monte Carlo samples the critical 

values of 2
2V̂ , 2

3V̂  and 2
4V̂  are 0.31, 0.91 and 0.56 

respectively. We note that 1V̂  ≡ 0 as shown in 

Appendix B. We use 17.5 as the X
2
 critical value. 

Table 1 gives some powers for  
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 negative binomial alternatives with probability 

function xm

x

xm
)1(

1
 







 
 for x = 0, 1, 2, ... 

with m > 0, denoted by NB(m, ),  

 Neyman Type A alternatives with probability 

function 







0 1
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e
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 for x = 0, 1, 2, 

... with 1 > 0 and 2 > 0, denoted by NTA(1, 2) 

and 

 Poisson alternatives f(x; ) for x = 0, 1, 2, ... with 

 > 0, denoted by P(). 

  In Table 1 no one test dominates but overall 

perhaps that based on 2
2V̂  does best. Double 

precision arithmetic was used in the Table 1 

calculations. In a few cases no estimate was obtained 

after 10,000 iterations and these cases were 

discarded. 
 

 

4. Example: Deaths of London Women During 

1910 to 1912 

 

  A classic data set considered by a number of 

authors starting with Whitaker (1914) considers 

deaths per day of women over 80 in London during 

the years 1910, 1911 and 1912 as recorded in the 

Times newspaper. Table 2 shows the data and 

expected counts for ( 1̂ , 2̂ , p̂ ) = (1.257, 2.664, 

0.360). Using ten classes X
2
 = 1.29 with six degrees 

of freedom and 2
 p-value 0.65. Also 2

2V̂  = (– 

0.077)
2
, 2

3V̂  = (– 0.314)
2
 and 2

4V̂  = (– 0.429)
2
, with 

bootstrap p-values 0.70, 0.46 and 0.55 respectively. 

Possibly due to different death rates in summer and 

winter, all tests indicate a good fit by a Poisson 

mixture. If a single Poisson is used to describe the 

data then X
2
 = 27.01 with eight degrees of freedom 

and a 2
 p-value is 0.001. 

 

Table 2. Deaths per day of London women over 80 

during 1910 to 1912 

# deaths 0 1 2 3 4 

Count 162 267 271 185 111 

Mixture expected 161 271 262 191 114 

Poisson expected 127 273 295 212 114 
 

# deaths 5 6 7 8 9 

Count 61 27 8 3 1 

Mixture expected 58 25 9 3 1 

Poisson expected 49 18 5 1 0 

 

  A plot of likelihood contours indicated the likelihood 

has a maximum at ( 1̂ , 2̂ ) and that there are no other 

stationary points nearby. As 1V̂  ≡ 0 we can give p̂  in 

terms of 1̂  and 2̂  and so p̂  does not need to be 

included in any likelihood contour plot. 
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Appendix A: Orthonormal Polynomials for a 

Poisson Mixture 

 

  Let  be the mean and t for t = 2, 3, ... the central 

moments, assumed to exist, of some distribution of 

interest. Then the first four orthonormal polynomials 

are, for x = 0, 1, 2, ... 

 

g0(x) = 1, g1(x) = (x – )/√2, 

g2(x) = {(x – )
2
 – 3(x – )/2 – 2}/√d 

and g3(x) = {(x – )
3
 – a(x – )

2
 – b(x – ) – c }/√e  

 

where 

 

d = 2
22

2
34 /    and e = 6 – 2a5  

+ (a
2
 – 2b)4 + 2(ab – c)3 + (b

2
 + 2ac)2 + c

2
 

 

in which  

 

a = ( 322435 /   )/d 

b = (
2

3253422

2

4 //   )/d 

c = ( 522

3

343 /2   )/d. 

 

Again assuming they exist, for t = 2, 3, ... write 
'

][t  

for the tth factorial moment. It now follows routinely 

that  
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2 = 
'

]2[  +  – 2
 



3 = 
'

]3[  + 3
'

]2[  +  – 3(
'

]2[  + ) 2 + 23
 

 

4 = 
'

]4[  + 6
'

]3[  + 7
'

]2[  +  – 4 (
'

]3[  + 3
'

]2[  + 

) + 62
(

'
]2[  + ) – 34

 

 

5 = 
'

]5[  + 10
'

]4[  + 25
'

]3[  + 15
'

]2[  +  

– 5 (
'

]4[  + 6
'

]3[  + 7
'

]2[  + ) 

+ 102
(

'

]3[  + 3
'

]2[  + ) – 103
(

'

]2[  + ) + 45
 

 

6 = 
'

]6[  + 15
'

]5[  + 65
'

]4[  + 90
'

]3[  + 31
'

]2[  +  – 

6 (
'

]5[  + 10
'

]4[  + 25
'

]3[  + 15
'

]2[  + ) + 152
 (

'
]4[  + 6

'
]3[  + 7

'
]2[  + ) – 203

 (
'

]3[  + 3
'

]2[  + ) 

+ 154
(

'
]2[  + ) – 56

. 

 

For a Poisson mixture the tth factorial moment is 
'

][t  = tt pp 21 )1(    so that, for example,  = 

21 )1(  pp  . Using the ML estimators 1̂ , 2̂  and 

p̂  and the above formulae for , ..., 6 we can 

calculate 2V̂  and 3V̂  where sV̂  = 

npxg
n

i is /)ˆ,ˆ,ˆ;(
1 21 

 , s = 2, 3.  

 

 

Appendix B: Proof That 1V̂  ≡ 0  

 

Given g1(x) from Appendix A above, the first 

smooth component npxg
n

i i /)ˆ,ˆ,ˆ;(
1 211 

  is 

proportional to X  – ̂ , where ̂  = 21
ˆ)ˆ1(ˆˆ  pp   

is the ML estimator of  = E[X]. For notational 

convenience arguments involving 1, 2 and p are 

henceforth suppressed. To obtain the ML estimators 

of 1, 2 and p note that the likelihood is L = 

 

n

i i pxf
1 21 ),,;(*  . Taking logarithms and 

differentiating gives  

 







 n

i

i
i

i xf
x

xpf
L

1 1

1

1

)(*/]}1)[({
log


, 







 n

i

i
i

i xf
x

xpf
L

1 2

2

2

)(*/]}1)[({
log


 

and 







 n

i

iii xfxfxf
p

L

1

21 )(*/)()({
log

. 

 

From 0/log  rL   for r = 1 and 2 we 

obtain  

 








n

i

iir

n

i

iiri

r

xfxf

xfxfx

1

1

)(*/)(

)(*/)(

̂  
 

 

and from 0/log  pL  we obtain 





n

i

ii

n

i

ii xfxfxfxf
1

2

1

1 )(*/)()(*/)( . 

 

Using f*(x) = p f1(x) + (1 – p) f2(x) and the 

equation immediately above shows that 

 

n

i iir xfxf
1

)(*/)(  = n for r = 1 and 2. It 

now follows that  

 

 


n

i iirir xnfxfx
1

)}(*/{)(̂  and 

̂  = 21
ˆ)ˆ1(ˆˆ  pp   = 

nxfxfxp
n

i

iii /)(*/)(ˆ
1

1


 + 

nxfxfxp
n

i

iii /)(*/)()ˆ1(
1

2


  = 





n

i

iiii xnfxfpxfpx
1

21 )}(*/{)}()ˆ1()(ˆ{  = 




n

i

i nx
1

/  = x . 

 

It thus follows that 1V̂  ≡ 0. 
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Abstract

A smooth testing approach has been used to develop a test of the distributional assumption for generalized linear
models. Application of this test to help assess Poisson and logistic regression models is discussed in this paper and
power is compared to some common tests.

Key words: generalized linear models, goodness of fit, logistic regression, Poisson regression

1. Introduction

The concept of smooth testing originally proposed
in [1] has been developed in [2] to provide goodness of
fit tests for a wide range of distributions. In [3], these
ideas have been applied to the generalized linear mod-
elling framework, where the variables are no longer
identically distributed, to derive a test of the distribu-
tional assumption. Section 2 describes the test, Section
3 comments on its application and Section 4 discusses
the results of simulation studies examining the power
of this test when applied to Poisson and logistic regres-
sion.

2. A Smooth Test of the Distributional Assumption
in Generalized Linear Models

The generalized linear modelling structure com-
prises a linear combination of predictor variables re-
lated via a link function to the mean of the response
distribution selected from the exponential family of
distributions. In commonly used notation, indepen-
dent response variables, Y1, . . . ,Yn, are distributed with
density function

f (y j; θ j) = exp
[
y jθ j − b(θ j)

a(φ j)
+ c(y j, φ j)

]

from an exponential family with canonical parameters
θ j to be estimated and dispersion parameters φ j as-
sumed to be known; a, b and c are known functions.
Using g(·) to represent the link function:

g(µ j) = η j = xT
j β = x j1β1 + . . . + x jpβp

where µ j = E[Y j] = b′(θ j) for j = 1, . . . , n. To sim-
plify subscripting, an explicit intercept term, β0, is not

shown. There is no loss of generality as β1 can become
an intercept term by setting all x j1 = 1.

To test the distributional assumption, the assumed
response variable density, f (y j; θ j), is embedded
within a more complex alternative density function

fk(y j; τ, θ j) = C(τ, θ j) exp


k∑

i=1

τihi(y j; θ j)

 f (y j; θ j).

This structure allows for ‘smooth’ departures from the
assumed distribution controlled by the vector param-
eter, τ = [τ1, . . . , τk]T acting on the elements of the
set, {hi(y; θ)}, of polynomials up to order k which are
orthonormal on the assumed distribution. The normal-
izing constant, C(τ, θ j), simply ensures that fk(y j; τ, θ j)
is correctly scaled to provide a valid probability density
function.

When τ = 0, this smooth alternative collapses to the
original response variable distribution. Thus a test of
H0 : τ = 0 against HA : τ , 0 can reasonably be
considered a test of the distributional assumption in a
generalized linear model.

In [3], a score test statistic has been derived that can
be expressed as a sum of squares of several contribut-
ing components:

Ŝ k =
V̂2

1

ω̂2 + V̂2
2 + . . . + V̂2

k

where

V̂i =
1√
n

n∑

j=1

hi(y j; θ̂ j).

The ith component involves the sum over the data
of the ith order polynomial from the orthonormal se-
quence used in the construction of the smooth alterna-
tive distribution. The first component also contains a
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term

ω2 = 1 − 1T H1
n

which is related to the hat matrix, H, obtained from the
model estimation process.

Large values of Ŝ k provide evidence against H0.
Asymptotically, the components V̂2

1/ω̂
2, V̂2

2 , etc can
each be expected to follow the χ2

(1) distribution and Ŝ k

the χ2
(k) distribution. In practice this has not proved a

good enough approximation for common sample sizes
and so a parametric bootstrap process is recommended
to estimate p-values.

3. Applying the Smooth Test

In deriving this test of the distributional assumption,
the linear predictor and the link function are assumed
to be correctly specified. If this is not true then a large
value of the test statistic may be caused by a mismatch
between the data and these other components of the
generalized linear model rather than an inappropriate
response distribution. Similar issues arise with other
tests that are used to assess generalized linear mod-
els. For example, the well-known deviance statistic
is derived as a likelihood ratio test statistic compar-
ing the fitted model with a saturated model having a
linear predictor with as many parameters as there are
covariate patterns. This provides the best possible fit
to the observed data – assuming that the specified re-
sponse distribution and link function are correct. If this
is not true, then a large value of the deviance statistic
may indicate a problem with the assumed distribution
or link function rather than the linear predictor. Sim-
ilarly, a model that ‘fails’ a goodness-of-link test may
really have a problem with the assumed distribution or
linear predictor and not the link function.

Can we ever truly diagnose the problem with a
poorly fitting model? Clearly all such tests need to
be carefully interpreted. There are many different
ways that a model can be misspecified, some of which
are very difficult to distinguish from each other. The
smooth testing approach is not a panacea. In addition
to providing a reliable test of the distributional assump-
tion however, the individual components can be con-
sidered as test statistics in their own right. This can
provide useful diagnostic information about the nature
of any lack of fit detected.

4. Power Study

4.1. Logistic Regression

Figure 1 shows the results of a simulation study for
logistic regression with a misspecified linear predic-
tor. In this example, the fitted model was

log
(

π

1 − π
)

= β0 + β1x1
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Figure 1: Power to detect a misspecified linear predictor in simulated
logistic regression data.

but the true model used to simulate the data was

log
(

π

1 − π
)

= β0 + β1x1 + β2x2.

A fixed covariate pattern was used for each sim-
ulation with 25 groups corresponding to x1 tak-
ing values −1,−0.5, 0, 0.5, 1 and x2 taking values
−1.2,−0.7,−0.2, 0.3, 0.8. There were m = 30 trials in
each group. These two models coincide when β2 = 0.
The misspecification increases as β2 increases (hori-
zontal axis).

100000 simulations were conducted for β2 = 0 to
characterize the null distribution of each test statistic
and 20000 simulations for each of the other β2 val-
ues to characterize the alternative distributions. The
α = 5% critical value from the null distribution was
used to define the rejection region and thus determine
the probability of the null hypothesis being rejected
(power to detect the misspecification) which is plotted
on the vertical axis.

Three test statistics have been considered here: the
deviance statistic, the smooth test statistic of order 3
and a link test statistic (see Appendix A). For all statis-
tics used, the powers were based on simulated dis-
tributions and not on approximate sampling distribu-
tions. In this first example, the deviance performs best
in detecting this particular kind of misspecification of
the linear predictor. But the smooth test still performs
reasonably well and the link test is essentially useless
here. The performance of the Ŝ k statistic is a compro-
mise between the performance of the individual com-
ponents which can also be considered separately. In
this case: the first component is almost exactly match-
ing the performance of the goodness of link test; the
second component has good power and drives the per-
formance of the overall test statistic and the third com-
ponent is not particularly useful. The components cor-
respond roughly to moments and so the second com-
ponent is suggesting that the variance in the data is not

48 Proceedings of the Fourth Annual ASEARC Conference

February 17-18, 2011, Parramatta, Australia



0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

P
ow

er

Smooth Deviance Link

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

P
ow

er
Smooth Deviance Link

V̂1

2
ω̂

2

V̂2

2

V̂3

2

Figure 2: Power to detect a misspecified link function in simulated
logistic regression data.

well modelled. This makes sense. A covariate is miss-
ing and so the stochastic part of the model is trying to
cope with additional variation that should really have
been explained by the linear predictor.

Figure 2 shows the results for a misspecified link
function where the fitted model was

π(η) =
eη

1 + eη
log

(
π

1 − π
)

= η = β0 + β1x1

but the data was simulated using a generalization of the
logit link function (see Appendix B):

π(η) =
eh(η;a)

1 + eh(η;a) . (1)

The parameter a plotted along the horizontal axis con-
trols the amount of misspecification with zero again
representing no misspecification. Other simulation de-
tails are the same as in the first example.

Unsurprisingly, it is the goodness of link test that
performs best here as this is the kind of problem it is
designed to detect. However, the smooth test still per-
forms well. Looking at the individual components, the
first component is again matching the performance of
the goodness of link test and is driving the performance
of the overall test statistic in detecting this kind of mis-
specified model. The first component is correctly indi-
cating that the problem is in how the mean of the data
is being modelled. The second and third components
aren’t useful in this case.

Figure 3 shows the results for a misspecified re-
sponse distribution where a binomial distribution is
specified when fitting the model but the data was
simulated using a beta-binomial distribution where
the responses Y j are B(m j, π

∗
j) for π∗j independently

distributed as beta random variables on (0, 1) with
E[π∗j] = π j and Var(π∗j) = τπ j(1 − π j).

Again the parameter plotted along the horizontal
axis, τ in this case, controls the amount of misspecifi-
cation with zero representing no misspecification. The
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Figure 3: Power to detect a misspecified response distribution in
simulated logistic regression data.
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Figure 4: Power to detect a misspecified linear predictor distribution
in simulated Poisson regression data.

deviance test performs best in detecting this particu-
lar type of misspecification, with the smooth test again
performing reasonably well and the goodness of link
test poorly. The story with the components is again
similar with the first component matching the perfor-
mance of the goodness of link test and the second com-
ponent indicating correctly that the variance is not be-
ing modelled correctly in this example.

4.2. Poisson Regression

In Figure 4, the simulation scenario is the same
as for Figure 1 except that the linear predictor is set
to log µ where Y j ∼ P(µ j). The performance of the
smooth test statistic and components in detecting this
type of misspecified linear predictor in Poisson regres-
sion can be seen to be very similar to that already dis-
cussed for logistic regression.

In Figure 5, a Poisson distribution is specified when
fitting the model but the data was simulated using a
negative binomial distribution with log µ j = η j and
variance µ j + τµ2

j . As in the similar logistic regression
example, the deviance is more powerful in detecting
the misspecification but the smooth test performs rea-
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Figure 5: Power to detect a misspecified response distribution in
simulated Poisson regression data.

sonably and the second component correctly indicates
that the problem is in how the variance of the data is
being modelled.

5. Conclusions

A smooth test for assessing the distributional as-
sumption in generalized linear models has been de-
rived in [3] and applied here to Poisson and logistic
regression models fitted to simulated data. While not
always the most powerful test, it appears to perform
quite well in detecting lack of fit even when the mis-
specification is in the link function or the linear predic-
tor rather than the response distribution. Interpretation
of the components provides additional diagnostic in-
formation.

A. Goodness of Link Test

There are a number of tests described in the liter-
ature for testing the adequacy of the link function in
a generalized linear model. Many of these are spe-
cific to a particular link function. The goodness of
link test used in this paper is more generally applicable
and is equivalent to the linktest function provided in
STATA [4].

The η̂ = Xβ̂ term from the fitted model and a η̂2

term are used as the predictors of the original response
variables in a new model. The η̂ term contains all the
explanatory information of the original model. If there
is a misspecified link the relationship between η̂ and
g(y) will be non-linear and the η̂2 term is likely to be
significant. The difference in deviance between these
two models has been used as the link test statistic in
this study.

B. Generalized Logit Function

Expressed as an inverse link function, a generaliza-
tion of the logit function is described by [5] in the same

form as Eq. (1) but using a function h(η;α1, α2) where
the two shape parameters, α1 and α2, separately con-
trol the left and right tails. α1 = α2 gives a symmetric
probability curve π(η) with the logistic model as the
special case α1 = α2 = 0. The function h(η; a) used
in Eq. 1 corresponds to a = −α1 = α2. This gives
an asymmetric probability curve that according to [5]
corresponds to a Box-Cox power transform.
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